Synthesis and spectroscopic characterization of 1,2-divanadium(v)substituted  $\alpha$ -Dawson polyoxotungstate-based 1 : 1-type Cp\*Rh<sup>2+</sup> complex showing three different supporting sites of the Cp\*Rh<sup>2+</sup> group †

### Kenji Nomiya,\* Yoshitaka Sakai and Takeshi Hasegawa

Department of Materials Science, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan. E-mail: nomiya@chem.kanagawa-u.ac.jp

Received 19th July 2001, Accepted 30th October 2001 First published as an Advance Article on the web 17th December 2001

A novel Dawson polyoxotungstate-based 1 : 1-type Cp\*Rh<sup>2+</sup> complex (Cp\* = C<sub>5</sub>Me<sub>5</sub>), (NBu<sub>4</sub>)<sub>6</sub>[(Cp\*Rh)( $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] **2**, was synthesized as an analytically pure, brown powder by 1 : 1 molar ratio reaction in ice-cooled CH<sub>2</sub>Cl<sub>2</sub> under air of 1,2-divanadium(v)-substituted  $\alpha$ -Dawson polyoxotungstate (NBu<sub>4</sub>)<sub>8</sub>[ $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] **1** with the dimeric precursor [Cp\*RhCl<sub>2</sub>]<sub>2</sub> without the use of AgBF<sub>4</sub>. The unprotonated polyoxotungstate support **1** was prepared *via* synthesis of K<sub>8</sub>[ $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>], (NBu<sub>4</sub>)<sub>6</sub>H<sub>2</sub>[ $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>], and deprotonation with aqueous NBu<sub>4</sub>OH. Solution (<sup>51</sup>V, <sup>31</sup>P, <sup>183</sup>W, <sup>1</sup>H and <sup>13</sup>C) NMR measurements in CD<sub>2</sub>Cl<sub>2</sub> of **2** have revealed that it contained three species, **2a** with *C<sub>s</sub>* symmetry, **2b** with *C*<sub>1</sub> symmetry and **2c** with *C<sub>s</sub>* symmetry, based on different supporting sites of the Cp\*Rh<sup>2+</sup> group on the surface oxygen atoms in the three edge-shared octahedra (B-site, V<sub>2</sub>W surface). The Cp\*Rh<sup>2+</sup> group in **2a**, **2b** and **2c** was covalently bound on the V<sub>2</sub>W surface, and the distribution of the species in *ca*. 1 : 2 : 1 ratio was not dependent on the initial concentration of [Cp\*RhCl<sub>2</sub>]<sub>2</sub> and temperature of the CH<sub>2</sub>Cl<sub>2</sub> solution (from room temperature to -90 °C). The brown powder containing **2a**, **2b** and **2c** was readily crystallized in CH<sub>2</sub>Cl<sub>2</sub> solution at -20 °C to give dark red crystals, which initially contained one predominant species, but, then, reverted to the 1 : 2 : 1 mixture of the three species during 5 h in CH<sub>2</sub>Cl<sub>2</sub> solution at room temperature. The polyoxoanion-supported Cp\*Rh<sup>2+</sup> complex **2** is unique and can be compared with the previous Dawson polyoxotungstate-based organometallic complexes.

Numerous examples of Keggin and Dawson polyoxoanionsupported organometallic and transition-metal complexes have been so far described.<sup>1-3</sup> Examples of vanadium-substituted polyoxoanion-supported organometallics are seen, e.g. in  $[\{(cod)Ir\}_2(V_4O_{12})]^{2^-,4_b}$   $[\{(cod)Ru(MeCN)_2\}(V_4O_{12})]^{2^-,4_c}$  and  $[(Cp*Rh)(\alpha-1,4,9-PW_9V_3O_{40})]^{4^-}$  (3, Cp\* = C<sub>5</sub>Me<sub>5</sub>).<sup>5<sub>c</sub></sup> One example of Dawson trivanadium-substituted polyoxotungstate-based organometallics has been reported as an unusual site-bonding 1 : 1-type compound  $(Bu_4N)_6[(CpTi)(\alpha-1,2,3 P_2W_{15}V_3O_{62}$ ] 5 with C<sub>s</sub> symmetry,<sup>5a</sup> and not the initially anticipated  $C_{3\nu}$  symmetry. In relation to this complex, we have very recently been successful in isolating a novel Dawson polyoxoanion-supported 2 : 1-type  $Cp^*Rh^{2+}$  complex, *i.e.* (NBu<sub>4</sub>)<sub>5</sub>- $[(Cp*Rh)_2(\alpha-1,2,3-P_2W_{15}V_3O_{62})]$  6 with  $C_s$  symmetry.<sup>5b</sup> These complexes are in contrast to the Dawson triniobiumsubstituted polyoxotungstate-based 1 : 1-type organometallic complexes with  $C_{3\nu}$  symmetry such as  $[(Cp*Rh)(\alpha-1,2,3-P_2W_{15}Nb_3O_{62})]^7$  7<sup>1*a*-*c*</sup> and  $[\{(C_6H_6)Ru\}(\alpha-1,2,3-P_2W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W_{15}Nb_3-P_3W$  $O_{62}$ ]<sup>7-.1a,d</sup> It has been proposed that either the Dawson-type tri-metal-substituted polyoxometalate-support [P<sub>2</sub>W<sub>15</sub>M<sub>3</sub>O<sub>62</sub>]<sup>9-</sup>  $(M = V^V vs. Nb^V)$  or the organometallic group with different charge (CpTi<sup>3+</sup> vs. Cp\*Rh<sup>2+</sup>), or both are variables for kinetic control process ( $C_s$  symmetry) vs. thermodynamic control process ( $C_{3\nu}$  symmetry) of the organometallic group in the support chemistry of  $[\alpha-1,2,3-P_2W_{15}M_3O_{62}]^{9-.5a}$ 

In extending our work concerning the interaction of the Cp\*Rh<sup>2+</sup> group with three edge-shared vanadium octahedra (B-site,  $V_3$  surface) in 6, we aimed at synthesizing a novel Cp\*Rh<sup>2+</sup> complex supported on 1,2-divanadium(v)-substituted  $\alpha$ -Dawson polyoxotungstate  $[\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>]<sup>8-</sup> (Fig. 1a), which can be expected to have still enough surface negativecharge density to support cationic organometallic groups. The water-soluble potassium salt of 1,2-divanadium(v)-substituted  $\alpha$ -Dawson polyoxotungstate was first reported by Pope *et al.* in 1983,6a and later by Contant et al. in 1991,6b but its development to a polyoxoanion-support for organometallic complexes has not been studied to date. However, the protonated form of the polyoxotungstate, e.g.  $(NBu_4)_6H_2[\alpha-1,2-P_2W_{16}V_2O_{62}]$ ,<sup>6b</sup> potentially involves a serious issue in the formation of the supported organometallic complexes. ‡ Thus, we have here prepared the unprotonated form, i.e. (NBu<sub>4</sub>)<sub>8</sub>[α-1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] 1 and used it as the polyoxotungstate support for the Cp\*Rh<sup>2+</sup> group.

# 

<sup>&</sup>lt;sup>†</sup> Electronic supplementary information (ESI) available: results of <sup>31</sup>P and <sup>51</sup>V NMR characterization of the reaction solutions containing **2**, showing the dependence of the starting concentrations on the reaction products. See http://www.rsc.org/suppdata/dt/b1/b106459m/

<sup>&</sup>lt;sup>‡</sup> We have found in our recent synthesis of  $[(Cp*Rh)(\alpha-1,4,9-PW_9-V_3O_{40})]^{4-3}$  3<sup>5</sup><sup>c</sup> using the protonated polyoxotungstate support (NBu<sub>4</sub>)<sub>4</sub>-H<sub>2</sub>[α-1,4,9-PW<sub>9</sub>V<sub>3</sub>O<sub>40</sub>] that (1) the two protons decrease the surface negative-charge density of  $[PW_9V_3O_{40}]^{6-}$ , reducing the interaction with the cationic organometallic group, (2) the two protons also have a tendency to limit the bonding site of the organometallic groups on the surface oxygens of the polyoxotungstate support led values, <sup>3a</sup> and (3) the use of the protonated polyoxotungstate support led to a formation of the compounds containing an organometallic counter cation species, *i.e.* [Cp\*Rh(solvent)<sub>3</sub>]H<sub>2</sub>[(Cp\*Rh)(α-1,4,9-PW<sub>9</sub>V<sub>3</sub>O<sub>40</sub>].



## (**b**)

**Fig. 1** Polyhedral representation of the Dawson polyoxotungstates  $[a-1,2-P_2W_{16}V_2O_{62}]^{8-}$  (a), in which the two vanadiums are represented by hatched octahedra in the 1,2-positions (B-site). The WO<sub>6</sub> octahedra occupy the white octahedra, and two PO<sub>4</sub> groups are shown as the internal black tetrahedra. The three most plausible structures of  $[(Cp^*Rh)(\alpha-1,2-P_2W_{16}V_2O_{62})]^{6-}$  are shown in (b). The three supporting sites of the Cp\*Rh<sup>2+</sup> group are a central position of the B-site (**2a**,  $C_s$  symmetry), either one of two vanadium octahedra of the B-site (**2b**,  $C_1$  symmetry), and a tungsten octahedron of the B-site (**2c**,  $C_s$  symmetry).

In this work, we have successfully prepared a novel Dawson polyoxotungstate-based 1 : 1-type  $Cp^*Rh^{2+}$  complex,  $(NBu_4)_6$ - $[(Cp*Rh)(\alpha\text{-}1,2\text{-}P_2W_{16}V_2O_{62})]$  2 as an analytically pure brown powder by 1:1 molar ratio reaction in ice-cooled CH<sub>2</sub>Cl<sub>2</sub> under air of 1 with [Cp\*RhCl<sub>2</sub>]<sub>2</sub> without the use of AgBF<sub>4</sub>. Complex 2 of the brown powder contained three different supporting sites of the Cp\*Rh<sup>2+</sup> group on the B-site V<sub>2</sub>W surface (Fig. 1b); the sites were a central position of the B-site (2a,  $C_s$  symmetry), either one of two vanadium octahedra of the B-site (2b,  $C_1$ ) symmetry), and a tungsten octahedron of the B-site (2c,  $C_s$ symmetry). The Cp\*Rh<sup>2+</sup> group in 2a, 2b and 2c was covalently bound on the V<sub>2</sub>W surface, and the distribution of the species in ca. 1:2:1 ratio was not dependent on the initial concentrations of [Cp\*RhCl<sub>2</sub>]<sub>2</sub> and temperature of the CH<sub>2</sub>Cl<sub>2</sub> solution (room temperature to -90 °C). By dissolving the brown powder in ice-cooled CH<sub>2</sub>Cl<sub>2</sub> and placing the solution in a refrigerator at -20 °C for two days, dark-red crystals were formed, which contained only one species of 2a, 2b and 2c predominantly just after dissolving, but they reverted to the 1 : 2 : 1 mixture of 2a, 2b and 2c during 5 h in CD<sub>2</sub>Cl<sub>2</sub> solution at room temperature. It was found from (<sup>51</sup>V, <sup>31</sup>P and <sup>1</sup>H) NMR changes of the dark red crystals that the most intense signal in the 1:2:1 mixture was due to 2a or 2c, and not to 2b.

The unique complex **2** can be compared with the previous Dawson polyoxotungstate-based organometallic complexes such as 5,<sup>5*a*</sup>  $6^{5$ *b* $}$  and 7.<sup>1*a*-*c*</sup> Herein, we report full details of the synthesis and spectroscopic characterization of the unprotonated polyoxotungstate support **1**, and the Cp\*Rh<sup>2+</sup> complex **2** both as a brown powder and as dark red crystals, with complete elemental analysis including oxygen, TG/DTA, FTIR and multiple (<sup>51</sup>V, <sup>31</sup>P, <sup>183</sup>W, <sup>1</sup>H and <sup>13</sup>C) NMR spectroscopies.

### **Results and discussion**

# Synthetic reactions, compositional identification and general properties

The unprotonated polyoxotungstate-support 1 was prepared *via* synthesis of  $K_8[\alpha-1,2-P_2W_{16}V_2O_{62}]$ , then  $(NBu_4)_6H_2[\alpha-1,2-P_2W_{16}V_2O_{62}]$ , and deprotonation with aqueous  $NBu_4OH$ . The  $K_8$  salt was prepared according to the literature.<sup>6b</sup> The  $(NBu_4)_6H_2$  salt was prepared from reaction of the  $K_8$  salt in water with excess amounts of solid  $NBu_4Br$  and purified by the first reprecipitation from the  $CH_3CN$  solution with PH 1.5 unbuffered water and the second reprecipitation from the  $CH_3CN$  solution from the  $(NBu_4)_6H_2$  salt and the  $(NBu_4)_8$  salt 1, both isolated without any solvated molecules, were consistent with all data of complete elemental analysis (all elements including oxygen), TG/DTA, FTIR, and <sup>31</sup>P, <sup>51</sup>V and <sup>183</sup>W NMR spectra.

Complex **2** was obtained as a brown powder in 64.8% (0.30 g scale) yield by 1 : 1 molar-ratio, stoichiometric reaction in icecooled CH<sub>2</sub>Cl<sub>2</sub> under air of the polyoxotungstate support **1** with [Cp\*RhCl<sub>2</sub>]<sub>2</sub> without the use of AgBF<sub>4</sub>, followed by repeated reprecipitations from the ice-cooled CH<sub>2</sub>Cl<sub>2</sub> solution with excess amounts of ice-cooled EtOAc. The molecular formula of **2** was consistent with all data of complete elemental analysis, TG/DTA, FTIR, and solution (<sup>51</sup>V, <sup>31</sup>P, <sup>183</sup>W, <sup>1</sup>H and <sup>13</sup>C) NMR spectroscopies. The formation of **2** is shown in eqn. 1.

# $$\begin{split} & [Cp^*RhCl_2]_2 + 2 \ (NBu_4)_8[\alpha - 1, 2 - P_2W_{16}V_2O_{62}] \ \mathbf{1} \longrightarrow \\ & 2 \ (NBu_4)_6[(Cp^*Rh)(\alpha - 1, 2 - P_2W_{16}V_2O_{62})] \ \mathbf{2} + 4 \ NBu_4Cl \ (1) \end{split}$$

In the present synthesis, compared with those of other polyoxoanion-based organometallics,<sup>1,3,5a</sup> there are several noteworthy points. (i) The work-ups of reaction and isolation required the ice-cooled temperature condition, because 2 in CH<sub>2</sub>Cl<sub>2</sub> gradually decomposed at room temperature. Its decomposition was slowed under ice-cooled conditions. (ii) The reaction proceeded without the use of silver(I) salts such as AgBF<sub>4</sub> and AgNO<sub>3</sub>, which have been usually used to remove the chloride ions from the precursors such as CpTiCl<sub>3</sub> and [Cp\*RhCl<sub>2</sub>]<sub>2</sub>.<sup>1,3</sup> The chlorine analysis revealed that no Cl atom is contained in the final product of 2, *i.e.* both in a brown powder and in dark red crystals. (iii) The appropriate solvent was CH<sub>2</sub>Cl<sub>2</sub>. The stability of 2 in coordinating solvents, e.g. CH<sub>3</sub>CN and DMSO, was very low; in such solvents a part of the supported Cp\*Rh<sup>2+</sup> groups was removed from the polyoxoanion surface to produce  $[Cp*Rh(solvent)_3]^{2+}$  which will be present as the counter cation of the polyoxotungstate-support.<sup>5b</sup> (iv) This reaction proceeded under air; an inert atmosphere was not required. (v) The synthetic stoichiometry to obtain a pure form of 2 in good yield was 1 : 1 molar ratio of 1 : [Cp\*RhCl<sub>2</sub>]<sub>2</sub>, although all the starting molar ratios tested, e.g. 1: 1/2, 1: 1, 1: 3/2, 1: 5/2 and 1: 5, gave complex 2 (see Table S in the electronic supplementary information (ESI)). (vi) The free NBu<sub>4</sub>Cl as by-product was completely removed by reprecipitation with ice-cooled EtOAc, and 2 as a brown powder was isolated without any solvated molecules and any adducts. (vii) The UV-vis absorption titration experiments<sup>2a</sup> at 339 nm showed a formation of the 1 : 1-composition in CH<sub>2</sub>Cl<sub>2</sub>. because a break point of absorbance was found at the 1:1 ratio of  $[Cp^*Rh]^{2+}/[P_2W_{16}V_2O_{62}]^{8-}$ .

The purity and molecular composition of **2** as a brown powder were established by complete elemental analysis (all elements including oxygen, and adding up to 99.26%), in which 0.74% difference from 100% can be attributed to only the difference of O analysis (calc. 17.13, found 16.40%). FTIR measurements confirm that the Dawson-type " $P_2M_{18}O_{c2}^{n-n}$ " polyoxometalate framework remains intact under the conditions of synthesis (Fig. 2).<sup>7</sup> In the FTIR spectrum of the



Fig. 2 FTIR spectra (KBr disks) of (a)  $(NBu_4)_8[\alpha-1,2-P_2W_{16}V_2O_{62}]$  1, (b)  $(NBu_4)_6[(Cp^*Rh)(\alpha-1,2-P_2W_{16}V_2O_{62})]$  2 as the brown powder and (c) 2 as the dark red crystals. The observation of the characteristic Dawson-type polyoxoanion IR bands between 1100–400 cm<sup>-1</sup> demonstrates that the  $[\alpha-1,2-P_2W_{16}V_2O_{62}]^{8-}$  support-ion remains intact under the conditions of the synthesis.

brown powder, the major change relative to **1** was not seen in the polyoxometalate region.

The dark red granular crystals were also obtained in 21.6% (0.1 g scale) yield by dissolving the brown powder in ice-cooled CH<sub>2</sub>Cl<sub>2</sub> and placing the solution in a refrigerator at -20 °C for two days, although the crystals were not suitable for X-ray structure analysis. The purity and the composition without any solvated molecules were also established by complete elemental analysis (all elements including oxygen, and adding up to 98.04%), where 1.96% difference from 100% can also be attributed to only the difference of O analysis (calc. 17.13, found 15.40%). In the FTIR of the dark red crystals, a major change was seen; the 942 and 781 cm<sup>-1</sup> bands in 1, respectively assignable to M–O<sub>terminal</sub> and M–O<sub>edge</sub>–M oxygens,<sup>7</sup> changed to the bands at 945 and (811, 759) cm<sup>-1</sup>, respectively, and the 880 cm<sup>-1</sup> band in 1 assignable to M–O<sub>corner</sub>–M oxygens<sup>7</sup> remarkably shifted to a higher energy band at 913 cm<sup>-1</sup>.

### Spectroscopic (<sup>51</sup>V, <sup>31</sup>P, <sup>183</sup>W, <sup>1</sup>H and <sup>13</sup>C NMR) characterization

The polyoxotungstate-support precursor, *i.e.* the K<sub>8</sub> salt, showed a clean two-line spectrum of <sup>31</sup>P NMR in D<sub>2</sub>O ( $\delta_P - 9.1$ , -13.7) and a very sharp single resonance of the <sup>51</sup>V NMR spectra in D<sub>2</sub>O ( $\delta_V - 531.6$ ), which were in good agreement with the literature data;  $\delta_P - 8.82$ , -13.44;<sup>66</sup>  $\delta_P - 9.3$ , -13.9;<sup>6a</sup>  $\delta_V$ -527.5 ( $\Delta v_{1/2}$  180 Hz);<sup>6b</sup>  $\delta_V - 528$  ( $\Delta v_{1/2}$  70 Hz).<sup>6a</sup> The <sup>31</sup>P NMR data in CD<sub>2</sub>Cl<sub>2</sub> of the (NBu<sub>4</sub>)<sub>6</sub>H<sub>2</sub> salt and the (NBu<sub>4</sub>)<sub>8</sub> salt **1** showed a clean two-line spectrum at ( $\delta_P - 9.9$ , -13.2) and ( $\delta_P$ -9.4, -14.1), respectively, confirming their homogeneity and purity (Fig. 3a). The <sup>51</sup>V NMR data of the (NBu<sub>4</sub>)<sub>6</sub>H<sub>2</sub> salt in DMSO-d<sub>6</sub> and the (NBu<sub>4</sub>)<sub>8</sub> salt **1** in CD<sub>2</sub>Cl<sub>2</sub> showed a very broad, single-line spectrum at  $\delta_V - 577.7$  ( $\Delta v_{1/2}$  2261.9 Hz) and a relatively sharp single-line spectrum at  $\delta_V - 513.6$  ( $\Delta v_{1/2}$  161.6 Hz), respectively (Fig. 4a). The line broadening of the (NBu<sub>4</sub>)<sub>6</sub>H<sub>2</sub> salt implies the presence of rapid transfers of two



Fig. 3 <sup>31</sup>P NMR in CD<sub>2</sub>Cl<sub>2</sub> with reference to external 25% H<sub>3</sub>PO<sub>4</sub> in H<sub>2</sub>O of (a) (NBu<sub>4</sub>)<sub>8</sub>[ $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] **1**, (b) (NBu<sub>4</sub>)<sub>6</sub>[(Cp\*Rh)( $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>)] **2** as the brown powder, (c) **2** as the dark red crystals just after dissolving and (d) after standing the solution of the dark red crystals for 5 h at room temperature. In each case a very high level of purity is indicated (*i.e.* with respect to any other P-containing polyoxoanions).

hydrogen ions on the V<sub>2</sub>W surface.<sup>3a</sup> The <sup>183</sup>W NMR of **1** in CD<sub>2</sub>Cl<sub>2</sub> showed a sharp seven-line ( $\delta_{\rm W}$  -99.7, -139.6, -167.4, -169.8, -179.5, -200.2, -201.6) plus a very broad two-line ( $\delta_{\rm W}$  -52.0, -157.8) spectrum as the expected nine-line spectrum (Fig. 5a), in which two broadened peaks around  $\delta_{\rm V}$  -57.0 and -157.8 are due to <sup>51</sup>V-<sup>183</sup>W coupling.<sup>3a</sup>

The <sup>31</sup>P NMR in CD<sub>2</sub>Cl<sub>2</sub> at room temperature of the polyoxotungstate-supported  $Cp^*Rh^{2+}$  complex 2 as a brown powder showed three sets of clear two-line <sup>31</sup>P NMR spectrum at ( $\delta_{\mathbf{P}}$  -10.4, -13.7), ( $\delta_{\mathbf{P}}$  -9.9, -13.5) and ( $\delta_{\mathbf{P}}$  -10.4, -13.5) with relative intensity ratio of ca. 2:1:1, respectively, suggesting the presence of three different species of the supported  $Cp^*Rh^{2+}$  group (Fig. 3b), and also a very high level of purity. The downfield resonance in each two-line <sup>31</sup>P NMR spectrum is assignable to the phosphorus (P(1) atom) closest to the  $V_2W$ site, whereas the upfield resonance is assignable to the phosphorus (P(2) atom) closest to the W<sub>3</sub> cap site. By bonding of the Cp\*Rh<sup>2+</sup> group, the chemical shift of the P(1) atom is substantially changed from those of 1 ( $\delta_P$  -9.4 in CD<sub>2</sub>Cl<sub>2</sub>). The <sup>51</sup>V NMR in CD<sub>2</sub>Cl<sub>2</sub> at room temperature of the brown powder showed a four-line spectrum consisting of two major peaks at  $\delta_{\rm V}$  = 547.8 ( $\Delta v_{1/2}$  289.1 Hz) and = 564.2 ( $\Delta v_{1/2}$  313.2 Hz) and two minor peaks at  $\delta_{\rm V}$  – 528.7 ( $\Delta v_{1/2}$  253.0 Hz), –536.4 ( $\Delta v_{1/2}$  397.6 Hz), in addition to the signal due to 1 at  $\delta_{\rm V}$  -514.3 which was produced by decomposition during the <sup>51</sup>V NMR measurements (Fig. 4b).

The <sup>31</sup>P and <sup>51</sup>V NMR spectral patterns of the brown powder were almost unchanged by varied temperature of the  $CD_2Cl_2$ solution (25 to -90 °C) and, also, by the varied molar ratio of the starting materials, *i.e.* **1** : [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (1 : 1/2 to 1 : 5). (see



Fig. 4 <sup>51</sup>V NMR in  $CD_2Cl_2$  with reference to external VOCl<sub>3</sub> of (a) (NBu<sub>4</sub>)<sub>8</sub>[ $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] **1**, (b) (NBu<sub>4</sub>)<sub>6</sub>[(Cp\*Rh)( $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>)] **2** as the brown powder, (c) **2** as the dark red crystals just after dissolving and (d) after standing the solution of the dark red crystals for 5 h at room temperature.

the Experimental section and Table S in ESI). <sup>1</sup>H NMR in CD<sub>2</sub>Cl<sub>2</sub> at room temperature of the brown powder showed three signals at  $\delta_{\rm H}$  1.93, 1.91 and 1.89 due to the C<sub>5</sub>Me<sub>5</sub> proton of the supported Cp\*Rh<sup>2+</sup> group with *ca.* 1:2:1 ratio, respectively. Correspondingly, <sup>13</sup>C NMR in CD<sub>2</sub>Cl<sub>2</sub> showed three carbon resonances due to three different methyl groups at  $\delta_{\rm C}$  9.40, 9.32, 9.28. These facts strongly support the brown powder complex of 2 containing three different supporting sites of the  $Cp*Rh^{2+}$  group on the V<sub>2</sub>W surface. One  $Cp*Rh^{2+}$  group is probably supported on a central position of the B-site (2a,  $C_s$ symmetry), one is on either one of two vanadium octahedra of the B-site (2b,  $C_1$  symmetry), and one is on a tungsten octahedron of the B-site (2c,  $C_s$  symmetry) (Fig. 1b). The Cp\*Rh<sup>2+</sup> group in 2a, 2b and 2c will be covalently bound on the polyoxotungstate surface and the distribution of the species is in ca. 1:2:1 ratio. The multiple signals of the <sup>183</sup>W NMR in CD<sub>2</sub>Cl<sub>2</sub> at room temperature were observed; for the expected 34-line spectrum (9  $\times$  2 signals for two C<sub>s</sub> symmetry species 2a and **2c**, and 16 signals for  $C_1$  symmetry species **2b**), more than 24 signals were detected (Fig. 5b). However, this <sup>183</sup>W NMR spectrum is very complex, because many signals of 1 formed by decomposition during measurements are contained, several true signals are potentially overlapped and several true signals are broadened due to  ${}^{51}V - {}^{183}W$  couplings.

On the other hand, the <sup>31</sup>P and <sup>51</sup>V NMR in  $CD_2Cl_2$  of **2** as dark red crystals, which were obtained by recrystallization of the brown powder from  $CH_2Cl_2$  solution at -20 °C, have shown that one of three species (**2a**, **2b** and **2c**) is readily crystallized.



**Fig. 5** <sup>183</sup>W NMR in CD<sub>2</sub>Cl<sub>2</sub> with reference to external Na<sub>2</sub>WO<sub>4</sub>–D<sub>2</sub>O saturated solution of (a) (NBu<sub>4</sub>)<sub>8</sub>[ $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] **1** and (b) (NBu<sub>4</sub>)<sub>6</sub>-[(Cp\*Rh)( $\alpha$ -1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>]] **2** as the brown powder. In (b), many signals of **1** formed by decomposition during measurements are contained, several true signals are potentially overlapped and several true signals are broadened due to <sup>51</sup>V–<sup>183</sup>W couplings.

In fact, the dark red crystals of **2** contained one predominant species with NMR resonances ( $\delta_{\rm H}$  1.91,  $\delta_{\rm P}$  –10.3 and -13.4,  $\delta_{\rm V}$  –563.4) in CH<sub>2</sub>Cl<sub>2</sub> solution just after dissolving (Figs. 3c, 4c), but the species then changed to the *ca.* 1 : 2 : 1 mixture of **2a**, **2b** and **2c** ( $\delta_{\rm H}$  1.89. 1.91, 1.94;  $\delta_{\rm P}$  (–10.4, –13.7), (–9.8, –13.5) and (–10.3, –13.4);  $\delta_{\rm V}$  –547.1, –563.3, –528.5, –535.2, in addition to a trace peak due to **1** at  $\delta_{\rm V}$  –515.0) by standing during 5 h in CH<sub>2</sub>Cl<sub>2</sub> solution at room temperature (Figs. 3d, 4d).

Further, from the <sup>51</sup>V and <sup>31</sup>P NMR changes the dark red crystals have shown, at least one of the three species (2a, 2b and 2c) can be assigned. The <sup>51</sup>V NMR of species 2b should be a two-line spectrum with equal intensity, while those of 2a and 2c should be a single-line spectrum, respectively. The <sup>51</sup>V NMR of the dark red crystals just after dissolving in CD<sub>2</sub>Cl<sub>2</sub> showed one major peak at  $\delta_{\rm V}$  -563.4 and one minor peak at  $\delta_{\rm V}$  -547.2. After standing the solution for more than 5 h at room temperature, the <sup>51</sup>V NMR showed two major peaks at  $\delta_{\rm v}$  – 547.1 and -563.3 and two minor peaks with almost equal intensity at  $\delta_{\rm v}$ -528.5 and -535.2. This <sup>51</sup>V NMR spectrum is the same as that of the solution of the powder sample. This spectral change suggests that two minor peaks with almost equal intensity at  $\delta_{v}$ -528.5 and -535.2 are due to the species **2b**, and, therefore, two major peaks at  $\delta_{\rm v}$  -547.1 and -563.3 are due to either one of the species 2a or 2c, vice versa. Correspondingly, in the <sup>31</sup>P NMR of the dark red crystals just after dissolving in CD<sub>2</sub>Cl<sub>2</sub>, the minor peaks at  $\delta_{\rm P}$  (-9.8 and -13.5) are due to the species **2b**, and the major peaks observed at  $\delta_{\rm P}$  (-10.3 and -13.4) and minor peaks at  $\delta_{\rm P}$  (-10.4 and -13.7) are due to the species 2a or 2c, respectively.

The intensity ratios of <sup>31</sup>P and <sup>1</sup>H NMR of the brown powder show *ca.* 1 : 2 : 1 ratio of the three species. This ratio also corresponds to that observed in the <sup>51</sup>V NMR of the powder sample. Thus, the most intense peak in the 1 : 2 : 1 mixture is due to **2a** or **2c**, and not to **2b**.

### Comparison of 2 with the related organometallic complexes

Compared with the recently prepared 2 : 1-type  $Cp^*Rh^{2+}$  complex, **6**, <sup>5b</sup> the reason why only one  $Cp^*Rh^{2+}$  group is supported

on the V<sub>2</sub>W surface in **2** is attributable to a lower surface charge of **1** than that of the  $[\alpha$ -1,2,3-P<sub>2</sub>W<sub>15</sub>V<sub>3</sub>O<sub>62</sub>]<sup>9-</sup>. The three bonding sites of one Cp\*Rh<sup>2+</sup> group in **2** are also unique, which can be compared with the previous examples, **5** with C<sub>s</sub> symmetry<sup>5a</sup> and **7** with C<sub>3v</sub> symmetry.<sup>1a-c</sup> The present work suggests that the Cp\*Rh<sup>2+</sup> group can be supported on three adjacent oxygen atoms of any triangular place in the V<sub>2</sub>W surface, as observed in the brown powder of **2**. Complex **2** gradually decomposed in CH<sub>2</sub>Cl<sub>2</sub> at room temperature, but the decomposition was considerably slowed at ice-cooled temperature and/or in the presence of [Cp\*RhCl<sub>2</sub>]<sub>2</sub>. Further, when complex **2** was dissolved in coordinating solvents such as CH<sub>3</sub>CN and DMSO, a part of the supported Cp\*Rh<sup>2+</sup> groups in the three species (**2a**, **2b** and **2c**) was removed from the polyoxoanion surfaces.

It has also been elucidated that complex **6** is stable in  $CH_2Cl_2$ , but unstable in  $CH_3CN$ ; when complex **6** was dissolved in  $CH_3CN$ , the supported  $Cp^*Rh^{2+}$  group was removed from the polyoxoanion surface to produce  $[Cp^*Rh(CH_3CN)_3]^{2+}$ , which was present as the counter cation.<sup>5b</sup> Such phenomena have not been observed in the supported  $Cp^*Rh^{2+}$  complexes on triniobium-substituted Keggin and Dawson polyoxometalates such as  $[(Cp^*Rh)(\beta-SiW_9Nb_3O_{40})]^{5-8}$  and **7**.<sup>1a-c</sup> It should be, therefore, noted that the bonding interaction between the  $Cp^*Rh^{2+}$  group and the edge-shared  $M_3O_6$  triads (M = Nb<sup>V</sup> vs. V<sup>V</sup>) is significantly different.

### Conclusion

The B-type unprotonated Dawson polyoxotungstate 1 has been successfully prepared. Using 1 as the polyoxotungstate support for the Cp\*Rh<sup>2+</sup> group, a novel Dawson polyoxotungstatebased 1 : 1-type  $Cp*Rh^{2+}$  complex 2 is first isolated as an analytically pure brown powder, which was present as a 1:2:1mixture of 2a, 2b and 2c with three different supporting sites of the  $Cp*Rh^{2+}$  group. The dark red crystals, obtained by crystallization of the brown powder in CH<sub>2</sub>Cl<sub>2</sub>, initially contained one predominant species, but it readily reverted to the 1:2:1 mixture of 2a, 2b and 2c in CH<sub>2</sub>Cl<sub>2</sub> solution at room temperature. Compound 1 as the polyoxotungstate support shows that it has still enough surface negative-charge density to support the cationic organometallic group,9 but the support chemistry of 1 is in contrast to that of the related polyoxoanion,  $[\alpha-1,2,3 P_2W_{15}V_3O_{62}$ <sup>9-</sup>. This work can also be extended to molecular design of multifunctional polyoxometalate-based novel heterogeneous and homogeneous catalysts.

### Experimental

### Materials

The following were used as received: Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O, 85% H<sub>3</sub>PO<sub>4</sub>, NaVO<sub>3</sub>, KCl, NBu<sub>4</sub>Br, 0.41 M aqueous NBu<sub>4</sub>OH, 6.0 M aqueous HCl (quantitative analysis grade), diethyl ether, ethyl acetate, dichloromethane, ethanol, acetonitrile (all from Wako); D<sub>2</sub>O, CD<sub>2</sub>Cl<sub>2</sub>, DMSO-*d*<sub>6</sub> (Isotec). The precursor [Cp\*RhCl<sub>2</sub>]<sub>2</sub> was prepared according to literature methods,<sup>10a,b</sup> and identified with elemental analysis, <sup>1</sup>H and <sup>13</sup>C NMR. The precursor K<sub>10</sub>[ $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>O<sub>6</sub>]·19H<sub>2</sub>O was prepared according to literature methods,<sup>10c,d</sup> and identified with elemental analysis, TG/DTA, FTIR and <sup>31</sup>P NMR.

### Instrumentation/analytical procedures

Complete elemental analyses were carried out by Mikroanalytisches Labor Pascher (Remagen, Germany). The samples were dried at room temperature under  $10^{-3}$ – $10^{-4}$  Torr overnight before analysis. The CHN analyses were performed using Perkin-Elmer PE2400 series II CHNS/O analyzer (Kanagawa University, Japan). Infrared spectra were recorded on a Jasco 300 FT-IR spectrometer in KBr disks at room temperature. Thermogravimetric (TG) and differential thermal analyses (DTA) were acquired using a Rigaku TG8101D and TAS 300 data-processing system. TG/DTA measurements were run under air with a temperature ramp of 4 °C per min between 20 and 500 °C.

<sup>1</sup>H (399.65 MHz), <sup>13</sup>C-{<sup>1</sup>H} (100.40 MHz), <sup>31</sup>P NMR (161.70 MHz) and <sup>51</sup>V NMR (104.95 MHz) spectra in solutions were recorded in 5 mm outer diameter tubes on a JEOL JNM-EX 400 FT-NMR spectrometer and JEOL EX-400 NMR dataprocessing system. <sup>1</sup>H and <sup>13</sup>C-{<sup>1</sup>H} NMR spectra were referenced to an internal TMS. Chemical shifts were reported as positive for resonances downfield of TMS ( $\delta$  0). <sup>31</sup>P NMR spectra were referenced to an external standard of 25% H<sub>3</sub>PO<sub>4</sub> in H<sub>2</sub>O in a sealed capillary and the <sup>51</sup>V NMR spectra referenced to an external standard of VOCl<sub>3</sub> by the substitution method. Chemical shifts were reported on the  $\delta$  scale with resonances upfield of  $H_3PO_4$  ( $\delta 0$ ) as negative and with resonances upfield of VOCl<sub>3</sub> ( $\delta$  0) as negative, respectively. <sup>183</sup>W NMR (16.50 MHz) spectra were recorded in 10 mm outer diameter tubes on a JEOL JNM-EX 400 FT-NMR spectrometer equipped with a JEOL NM-40T10L low-frequency tunable probe and a JEOL EX-400 NMR data-processing system. These spectra were referenced to an external standard of saturated  $Na_2WO_4$ -D<sub>2</sub>O solution by the substitution method. Chemical shifts were reported on the  $\delta$  scale with resonances upfield of Na<sub>2</sub>WO<sub>4</sub> ( $\delta$  0) as negative. In Figs. 4 and 5, the spectra were drawn by overlapping the reference peaks with the spectra measured by the substitution method.

### Preparations

**K**<sub>8</sub>[*a*-1,2-P<sub>2</sub>**W**<sub>16</sub>**V**<sub>2</sub>**O**<sub>62</sub>]·15**H**<sub>2</sub>**O**. This compound was prepared by a reaction of 50.0 g (10.0 mmol) of K<sub>10</sub>[*a*<sub>2</sub>-P<sub>2</sub>**W**<sub>17</sub>**O**<sub>61</sub>]·19H<sub>2</sub>**O** in 250 mL water with 90 mL of 0.5 M aqueous NaVO<sub>3</sub> under refluxing conditions according to the literature.<sup>6b</sup> Water-soluble, orange needle crystals were obtained in 46.1% (10.8 g scale) yield by repeated recrystallization from hot (*ca.* 80 °C) water. TG/DTA data: weight loss of 5.91% observed below 451 °C with endothermic peaks at 71, 91 and 151 °C; calc. for *x* = 15, 5.78% and calc. for *x* = 16, 6.14% in K<sub>8</sub>[*a*-1,2-P<sub>2</sub>**W**<sub>16</sub>V<sub>2</sub>**O**<sub>62</sub>]· *x*H<sub>2</sub>**O**. FTIR bands (KBr disk) in 1700–400 cm<sup>-1</sup> region (polyoxometalate region): 1624m, 1084s, 1015w, 946s, 921s, 785s, 599w, 528w, 473w cm<sup>-1</sup>. <sup>31</sup>P NMR (D<sub>2</sub>O, 22.0 °C): δ –9.1, -13.7. <sup>51</sup>V NMR (D<sub>2</sub>O, 22.0 °C): δ –531.6.

 $(NBu_4)_6H_2[\alpha-1,2-P_2W_{16}V_2O_{62}]$ . This compound was prepared by a reaction of 10.0 g (2.11 mmol) of  $K_8[\alpha - 1, 2 - P_2 W_{16} V_2 O_{62}]$ . 15H<sub>2</sub>O in 200 mL water with 60.0 g (186.2 mmol) of solid NBu₄Br, and purified by the first reprecipitation from the CH<sub>3</sub>CN solution (10 mL) with pH 1.5 unbuffered water (200 mL) and then by the second reprecipitation from the CH<sub>3</sub>CN solution (10 mL) with Et<sub>2</sub>O (300 mL). Yellow-orange powder, soluble in CH<sub>3</sub>CN, DMSO, EtOH and CH<sub>2</sub>Cl<sub>2</sub> and insoluble in water and  $Et_2O$ , was obtained in 56.3% (6.6 g scale) yield {Found (repeat trial for CHN analysis): C, 20.76 (20.83); H, 4.13 (3.85); N, 1.69 (1.27); O, 16.40; P, 1.01; V, 1.78; W, 52.70; total 98.65%. Calc. for  $C_{96}H_{218}N_6O_{62}P_2V_2W_{16}$  or (NBu<sub>4</sub>)<sub>6</sub>H<sub>2</sub>[P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>]: C, 20.76; H, 3.96; N, 1.51; O, 17.86; P, 1.12; V, 1.83; W, 52.96%}. Weight loss observed during drying overnight at room temperature under reduced pressure  $(10^{-3} 10^{-4}$  Torr) before analysis: 0.56% which shows this compound almost non-hygroscopic. TG/DTA data: no weight loss observed below 467 °C with exothermic peaks at 247, 275 and 391 °C. FTIR bands (KBr disk) in 1700-400 cm<sup>-1</sup> region (polyoxometalate region): 1637m, 1483m, 1380m, 1086m, 951s, 915m, 788s, 600w, 527w cm<sup>-1</sup>. <sup>31</sup>P NMR (DMSO-*d*<sub>6</sub>, 23.0 °C):  $\delta$  -9.2, -13.0. <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22.7 °C):  $\delta$  -9.9, -13.2. <sup>51</sup>V NMR (DMSO- $d_6$ , 21.3 °C):  $\delta$  – 577.7 ( $\Delta v_{1/2}$  2261.9 Hz). <sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, 21.7 °C): δ – 533.8, –577.1.

This compound in the solid state showed a color change from yellow-orange of the fresh sample to greenish after a couple of weeks at room temperature, and the <sup>31</sup>P and <sup>51</sup>V NMR showed several new minor peaks, in addition to the original major peaks.

 $(NBu_4)_8[\alpha-1,2-P_2W_{16}V_2O_{62}]$  1. The unprotonated polyoxotungstate-support 1 was prepared by deprotonation of 3.0 g (0.54 mmol) (NBu<sub>4</sub>)<sub>6</sub>H<sub>2</sub>[α-1,2-P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] in 50 mL of CH<sub>3</sub>CN with 2.64 mL of 0.41 M aqueous NBu<sub>4</sub>OH. The reaction solution was evaporated to dryness by a rotary evaporator at 40 °C. Orange powder, soluble in CH<sub>3</sub>CN, DMSO and CH<sub>2</sub>Cl<sub>2</sub>, was obtained in 89.0% (2.9 g scale) yield {Found (repeat trial for CHN analysis): C, 25.61 (25.50); H, 5.10 (4.73); N, 1.97 (1.67); O, 16.30; P, 1.01; V, 1.72; W, 48.40; total 100.11%. Calc. for C<sub>128</sub>H<sub>288</sub>N<sub>8</sub>O<sub>62</sub>P<sub>2</sub>V<sub>2</sub>W<sub>16</sub> or (NBu<sub>4</sub>)<sub>8</sub>[P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>]: C, 25.47; H, 4.81; N, 1.86; O, 16.43; P, 1.03; V, 1.69; W, 48.73%}. Weight loss observed during drying overnight at room temperature under reduced pressure  $(10^{-3}-10^{-4} \text{ Torr})$  before analysis: 1.98% which shows this compound slightly hygroscopic. TG/DTA data: no weight loss observed below 475 °C with exothermic peaks at 232, 278 and 475 °C. FTIR bands (KBr disk) in 1700-400 cm<sup>-1</sup> region (polyoxometalate region): 1636m, 1485m, 1466m, 1381m, 1152w, 1084s, 1062m, 1037w, 1014w, 942s, 880m, 781s, 599w, 529w, 468w cm<sup>-1</sup>. <sup>31</sup>P NMR (DMSO-*d*<sub>6</sub>, 22.4 °C):  $\delta$  -9.2, -13.8. <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22.0 °C):  $\delta$  -9.4, -14.1. <sup>51</sup>V NMR (DMSO- $d_6$ , 23.0 °C):  $\delta$  -515.9 ( $\Delta v_{1/2}$ 308.2 Hz). <sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, 21.7 °C): δ -513.6 (Δν<sub>1/2</sub> 161.6 Hz). <sup>183</sup>W NMR (CD<sub>2</sub>Cl<sub>2</sub>, 23.0 °C):  $\delta$  -57.0 (br), -99.7, -139.6, -157.8 (br), -167.4, -169.8, -179.5, -200.2, -201.6.

 $(NBu_4)_6[(Cp*Rh)(\alpha-1,2-P_2W_{16}V_2O_{62})]$  2 as brown powder. Synthesis was performed under air. To 0.48 g (0.08 mmol) of (NBu<sub>4</sub>)<sub>8</sub>[P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>] dissolved in 10 mL of ice-cooled CH<sub>2</sub>Cl<sub>2</sub> 0.05 g (0.08 mmol) of solid [Cp\*RhCl<sub>2</sub>], was added. Stirring for 3 h was performed in an ice bath. The dark red clear solution was added dropwise into 500 mL of ice-cooled EtOAc, and the mixture was stirred for 30 min. The brown powder was collected on membrane filter (JG 0.2µm), thoroughly sucked and dried in vacuo for 2 h. The yield at this stage was 0.37 g. The brown powder of 2 was again reprecipitated by adding the solution dissolved in 5 mL of ice-cooled CH<sub>2</sub>Cl<sub>2</sub> to 500 mL of ice-cooled EtOAc. Finally, brown powder obtained in 64.8% (0.30 g scale) yield was soluble in CH<sub>2</sub>Cl<sub>2</sub>, sparingly soluble in CHCl<sub>3</sub>, but insoluble in EtOAc and Et2O {Found (repeat trial for CHN analysis): C, 22.00 (22.38); H, 4.21 (2.99); N, 1.57 (1.40); Cl, 0.20; O, 16.40; P, 0.97; V, 1.78; Rh, 1.90; W, 50.20; total 99.26%. Calc. for  $C_{106}H_{231}N_6O_{62}P_2V_2RhW_{16}$  or  $(NBu_4)_6[(Cp*Rh) P_2W_{16}V_2O_{62}$ ]): C, 21.99; H, 4.02; N, 1.45; Cl, 0.00; O, 17.13: P, 1.07; V, 1.76; Rh, 1.78; W, 50.80%}. Weight loss observed during drying overnight at room temperature under reduced pressure  $(10^{-3}-10^{-4} \text{ Torr})$  before analysis: 0.50% which shows this compound almost non-hygroscopic. TG/DTA data: weight loss of 0.53% observed below 146 °C; decomposition began around 150 °C with an exothermic peak at 258 °C. FTIR bands (KBr disk) in 1700–400 cm<sup>-1</sup> region (polyoxometalate region): 1637m, 1484m, 1459m, 1380m, 1152w, 1085s, 1022w, 943vs, 920w, 881m, 785vs, 670w, 599w, 566w, 528w, 469w, 419w cm<sup>-</sup> <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 23.1 °C):  $\delta$  (C<sub>5</sub>Me<sub>5</sub>) (minor peak) 1.89, (major peak) 1.91, (minor peak) 1.93. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, -10.1 °C):  $\delta$  (C<sub>5</sub>*Me*<sub>5</sub>) 1.90, 1.93, 1.95. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, -29.9 °C): δ (C<sub>5</sub>Me<sub>5</sub>) 1.90, 1.94, 1.95. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, -49.7 °C):  $\delta$  (C<sub>5</sub>Me<sub>5</sub>) 1.91, 1.95. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, -90.4 °C):  $\delta$  (C<sub>5</sub>Me<sub>5</sub>) 1.92, 1.96. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22.7 °C):  $\delta$  (C<sub>5</sub>Me<sub>5</sub>) 9.28, 9.32, 9.40, (C<sub>5</sub>Me<sub>5</sub>) 94.7–94.9. <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22.2 °C):  $\delta$  (major peaks) (-10.4, -13.7), (minor peaks) (-9.9, -13.5), (-10.4, -13.5). <sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, 23.0 °C):  $\delta$  (trace peak due to 1) -514.3, (major peak) -547.8 ( $\Delta v_{1/2}$  289.1 Hz), -564.2  $(\Delta v_{1/2} 313.2 \text{ Hz})$ , (minor peaks) -528.7 ( $\Delta v_{1/2} 253.0 \text{ Hz}$ ), -536.4  $(\Delta v_{1/2} 397.6 \text{ Hz})$ . <sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, 9.9 °C):  $\delta$  (trace peak due to 1) -514.0, (major peaks) -548.7, -565.3, (minor peaks) -528.5, -537.0.<sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, -10.0 °C): δ (trace peak due to **1**) -515.5, (major peaks) -550.4, -567.7, (minor peaks) -529.2, -539.4.<sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, -30.0 °C): δ (trace peak due to **1**) -516.9, (major peaks) -551.9, -570.4, (minor peaks) -529.8, -541.1.<sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, -50.0 °C): δ (major peaks) -553.7, -573.0, (minor peaks) -530.3, -543.2.<sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, -70.3 °C): δ (major peaks) -555.7, -576.5, (minor peaks) -531.5, -546.5.<sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, -90.4 °C): δ (major peaks) -557.4, (minor peaks) -553.4, -548.6, -579.2.<sup>183</sup>W NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22.6 °C):  $\delta -37.6, -56.8, -71.5, -87.5, -93.5, -97.0, -106.2, -116.3, -120.7, -126.0, -136.7, -146.6, -152.5, -155.6, -157.6, -167.1, -167.8, -173.7, -174.3, -175.0, -180.6, -184.2, -184.9, -190.7, -214.7.$ 

Since compound **2** in CH<sub>2</sub>Cl<sub>2</sub> gradually decomposed at room temperature, the <sup>183</sup>W NMR spectrum is contaminated with signals due to **1** formed by decomposition during measurements. <sup>31</sup>P NMR measurements showed that its decomposition was slowed in ice-cooled temperature and/or in the presence of [Cp\*RhCl<sub>2</sub>]<sub>2</sub>. Further, the <sup>31</sup>P and <sup>51</sup>V NMR measurements showed that when this compound was dissolved in CH<sub>3</sub>CN and DMSO, some of the supported Cp\*Rh<sup>2+</sup> groups were removed from the polyoxoanion surfaces.

Crystallization of brown powder of 2 to dark red crystals. The brown powder of 2 was dissolved in 3 mL of ice-cooled CH<sub>2</sub>Cl<sub>2</sub> and the solution was left to stand for two days in a refrigerator at -20 °C. The dark red granular crystals formed were collected on membrane filter (JG 0.2µm), washed with 2 mL of icecooled CH<sub>2</sub>Cl<sub>2</sub> and dried in vacuo for 2 h. The crystals changed to a dark red powder. The dark red powder, soluble in CH<sub>2</sub>Cl<sub>2</sub>, sparingly soluble in CHCl<sub>3</sub>, and insoluble in EtOAc and Et<sub>2</sub>O, was obtained in 21.6% (0.1 g scale) yield {Found (repeat trial for CHN analysis): C, 21.96 (21.69); H, 4.15 (3.78); N, 1.46 (1.39); Cl, <0.1; O, 15.40; P, 1.02; V, 1.74; Rh, 1.81; W, 50.50; total 98.04%. Calc. for C<sub>106</sub>H<sub>231</sub>N<sub>6</sub>O<sub>62</sub>P<sub>2</sub>V<sub>2</sub>RhW<sub>16</sub> or (NBu<sub>4</sub>)<sub>6</sub>-[(Cp\*Rh)P<sub>2</sub>W<sub>16</sub>V<sub>2</sub>O<sub>62</sub>]: C, 21.99; H, 4.02; N, 1.45; Cl, 0.00; O, 17.13; P, 1.07; V, 1.76; Rh, 1.78; W, 50.80%}. Weight loss observed during drying overnight at room temperature under reduced pressure  $(10^{-3}-10^{-4} \text{ Torr})$  before analysis: 0.88% which shows this compound almost non-hygroscopic. TG/DTA data: weight loss of 0.67% observed below 131 °C; decomposition began around 200 °C with exothermic peaks at 234, 283 and 427 °C. FTIR bands (KBr disk) in 1700–400 cm<sup>-1</sup> region (polyoxometalate region): 1637m, 1483m, 1379w, 1152w, 1084s, 1015w, 945s, 913m, 811vs, 759s, 670w, 662w, 599w, 565w, 526m, 470w cm<sup>-1</sup>. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 26.6 °C):  $\delta$  (C<sub>5</sub>Me<sub>5</sub>) (major peak) 1.91, (minor peaks) 1.89, 1.94. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 26.6 °C; measured after standing the solution for 5 h at room temperature):  $\delta$ (C<sub>5</sub>Me<sub>5</sub>) (major peak) 1.91, (minor peaks) 1.89, 1.94. <sup>31</sup>P NMR  $(CD_2Cl_2, 26.7 \ ^{\circ}C): \delta$  (major peaks) (-10.3, -13.4), (minor peaks) (-10.4, -13.7). <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>, 27.5 °C; measured after standing the solution for 5 h at room temperature):  $\delta$ (major peaks) (-10.3, -13.4), (minor peaks) (-9.8, -13.5), (-10.4, -13.7). <sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, 26.6 °C):  $\delta$  (trace peak due to 1) -515.2, (major peak) -563.4, (minor peak) -547.2, (trace peaks) -528.3, -535.2. <sup>51</sup>V NMR (CD<sub>2</sub>Cl<sub>2</sub>, 27.4 °C; measured after standing the solution for 5 h at room temperature):  $\delta$  (trace peak due to 1) -515.0, (major peaks) -547.1, -563.3, (minor peaks) -528.5, -535.2.

### Acknowledgements

One of us (K.N.) gratefully acknowledges financial support from Grant-in-Aid for Scientific Research (C) (10640552) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

### References

1 (a) M. Pohl, Y. Lin, T. J. R. Weakley, K. Nomiya, M. Kaneko,

H. Weiner and R. G. Finke, *Inorg. Chem.*, 1995, **34**, 767; (*b*) D. J. Edlund, R. J. Saxton, D. K. Lyon and R. G. Finke, *Organometallics*, 1988, **7**, 1692; (*c*) K. Nomiya, C. Nozaki, M. Kaneko, R. G. Finke and M. Pohl, *J. Organomet. Chem.*, 1995, **505**, 23; (*d*) M. Pohl and R. G. Finke, *Organometallics*, 1993, **12**, 1453; (*e*) H. Weiner, J. D. Aiken, III and R. G. Finke, *Inorg. Chem.*, 1996, **35**, 7905; (*f*) K. Nomiya, M. Pohl, N. Mizuno, D. K. Lyon and R. G. Finke, *Inorg. Synth.*, 1997, **31**, 186.

- 2 (a) H. Weiner, Y. Hayashi and R. G. Finke, *Inorg. Chem.*, 1999, 38, 2579; (b) H. Weiner, Y. Hayashi and R. G. Finke, *Inorg. Chim. Acta*, 1999, 291, 426; (c) H. Weiner and R. G. Finke, *J. Am. Chem. Soc.*, 1999, 121, 9831.
- 3 (a) R. G. Finke, B. Rapko, R. J. Saxton and P. J. Domaille, J. Am. Chem. Soc., 1986, 107, 2947; (b) R. G. Finke, B. Rapko and P. J. Domaille, Organometallics, 1986, 5, 175; (c) R. G. Finke, C. A. Green and B. Rapko, Inorg. Synth., 1990, 27, 128; (d) R. G. Finke, M. W. Droege, J. C. Cook and K. S. Suslick, J. Am. Chem. Soc., 1984, 106, 5750.
- 4 (a) H. K. Chae, W. G. Klemperer and V. W. Day, *Inorg. Chem.*, 1989, **28**, 1423; (b) V. W. Day, W. G. Klemperer and A. Yagasaki, *Chem.*

Lett., 1990, 1267; (c) D. Attanasio, F. Bachechi and L. Suber, J. Chem. Soc., Dalton Trans., 1993, 2373.

- 5 (a) B. M. Rapko, M. Pohl and R. G. Finke, *Inorg. Chem.*, 1994, 33, 3625; (b) K. Nomiya and T. Hasegawa, *Chem. Lett.*, 2000, 410; (c) K. Nomiya, Y. Sakai, Y. Yamada and T. Hasegawa, *J. Chem. Soc., Dalton Trans.*, 2001, 52.
- 6 (a) S. P. Harmalker, M. A. Leparulo and M. T. Pope, J. Am. Chem. Soc., 1983, 105, 4286; (b) M. Abbessi, R. Contant, R. Thouvenot and G. Herve, Inorg. Chem., 1991, 30, 1695.
- 7 C. Rocchiccioli-Deltcheff and R. Thouvenot, *Spectrosc. Lett.*, 1979, **12**, 127.
- 8 R. G. Finke and M. W. Droege, J. Am. Chem. Soc., 1984, 106, 7274;
  R. G. Finke, K. Nomiya, C. A. Green and M. W. Droege, Inorg. Synth., 1992, 29, 239.
- 9 L. Barcza and M. T. Pope, J. Phys. Chem., 1973, 77, 1795.
- 10 (a) J. W. Kang, K. Moseley and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970; (b) C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 228; (c) R. Contant, Inorg. Synth., 1990, 27, 104; (d) D. K. Lyon, W. K. Miller, T. Novet, P. J. Domaille, E. Evitt, D. C. Jonson and R. G. Finke, J. Am. Chem. Soc., 1991, 113, 7209.